Product Code Database
Example Keywords: psp -house $31
barcode-scavenger
   » » Wiki: Kondo Effect
Tag Wiki 'Kondo Effect'.
Tag

In , the Kondo effect describes the scattering of conduction electrons in a metal due to magnetic impurities, resulting in a characteristic change i.e. a minimum in electrical resistivity with temperature. The cause of the effect was first explained by , who applied third-order perturbation theory to the problem to account for scattering of conduction electrons off d-orbital electrons localized at impurities (). Kondo's calculation predicted that the scattering rate and the resulting part of the resistivity should increase logarithmically as the temperature approaches 0 K. Extended to a lattice of magnetic impurities, the Kondo effect likely explains the formation of and in intermetallic compounds, especially those involving rare earth elements such as , , and , and actinide elements such as . The Kondo effect has also been observed in systems.


Theory
The dependence of the resistivity \rho on temperature T, including the Kondo effect, is written as

\rho(T) = \rho_0 + aT^2 + c_m \ln\frac{\mu}{T} + bT^5,

where \rho_0 is the residual resistivity, the term aT^2 shows the contribution from the properties, and the term bT^5 is from the lattice vibrations: a, b, c_m and \mu are constants independent of temperature. Jun Kondo derived the third term with logarithmic dependence on temperature and the experimentally observed concentration dependence.


History
In 1930, and B. Voigt observed that the resistivity of nominally pure gold reaches a minimum at 10 K, and similarly for nominally pure Cu at 2 K. Similar results were discovered in other metals. Kondo described the three puzzling aspects that frustrated previous researchers who tried to explain the effect:

  • The resistivity of a truly pure metal is expected to decrease monotonically, because with lower temperature, the probability of electron-phonon scattering decreases.
  • The resistivity should rapidly plateau when the temperature drops below the of the phonons, corresponding with the highest allowed mode of vibration of the metal. However, in the AuFe alloy, the resistivity continues to rise sharply below 0.01 K, yet there seemed to be no energy gap in AuFe alloy that small.
  • The phenomenon is universal, so any explanation should apply in general.

Experiments in the 1960s by at Bell Laboratories showed that phenomenon was caused by magnetic impurity in nominally pure metals. When Kondo sent a preview of his paper to Sarachik, Sarachik confirmed the data fit the theory.

Kondo's solution was derived using perturbation theory resulting in a divergence as the temperature approaches 0 K, but later methods used non-perturbative techniques to refine his result. These improvements produced a finite resistivity but retained the feature of a resistance minimum at a non-zero temperature. One defines the Kondo temperature as the energy scale limiting the validity of the Kondo results. The Anderson impurity model and accompanying Wilsonian theory were an important contribution to understanding the underlying physics of the problem. Based on the Schrieffer–Wolff transformation, it was shown that the Kondo model lies in the strong coupling regime of the Anderson impurity model. The Schrieffer–Wolff transformation projects out the high energy charge excitations in the Anderson impurity model, obtaining the Kondo model as an effective Hamiltonian.

The Kondo effect can be considered as an example of asymptotic freedom, i.e. a situation where the coupling becomes non-perturbatively strong at low temperatures and low energies. In the Kondo problem, the coupling refers to the interaction between the localized magnetic impurities and the itinerant electrons.


Examples
Extended to a lattice of magnetic ions, the Kondo effect likely explains the formation of and in intermetallic compounds, especially those involving rare earth elements such as , , and , and actinide elements such as . In materials, the non-perturbative growth of the interaction leads to quasi-electrons with masses up to thousands of times the free electron mass, i.e., the electrons are dramatically slowed by the interactions. In a number of instances they are . It is believed that a manifestation of the Kondo effect is necessary for understanding the unusual metallic delta-phase of .

The Kondo effect has been observed in systems. In such systems, a quantum dot with at least one unpaired electron behaves as a magnetic impurity, and when the dot is coupled to a metallic conduction band, the conduction electrons can scatter off the dot. This is completely analogous to the more traditional case of a magnetic impurity in a metal.

Band-structure hybridization and flat band topology in Kondo insulators have been imaged in angle-resolved photoemission spectroscopy experiments.

In 2012, Beri and Cooper proposed a topological Kondo effect could be found with , while it has been shown that quantum simulations with may also demonstrate the effect.

In 2017, teams from the Vienna University of Technology and Rice University conducted experiments into the development of new materials made from the metals cerium, bismuth and palladium in specific combinations and theoretical work experimenting with models of such structures, respectively. The results of the experiments were published in December 2017 and, together with the theoretical work, lead to the discovery of a new state,Gabbatiss, J. (2017) "Scientists discover entirely new material that cannot be explained by classical physics", The Independent a correlation-driven . The team dubbed this new Weyl-Kondo .


Further reading

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time